Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation.

Identifieur interne : 000A69 ( Main/Exploration ); précédent : 000A68; suivant : 000A70

The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation.

Auteurs : Haoran Li [États-Unis] ; Daphne T. Mapolelo ; Nin N. Dingra ; Sunil G. Naik ; Nicholas S. Lees ; Brian M. Hoffman ; Pamela J. Riggs-Gelasco ; Boi Hanh Huynh ; Michael K. Johnson ; Caryn E. Outten

Source :

RBID : pubmed:19715344

Descripteurs français

English descriptors

Abstract

The transcription of iron uptake and storage genes in Saccharomyces cerevisiae is primarily regulated by the transcription factor Aft1. Nucleocytoplasmic shuttling of Aft1 is dependent upon mitochondrial Fe-S cluster biosynthesis via a signaling pathway that includes the cytosolic monothiol glutaredoxins (Grx3 and Grx4) and the BolA homologue Fra2. However, the interactions between these proteins and the iron-dependent mechanism by which they control Aft1 localization are unclear. To reconstitute and characterize components of this signaling pathway in vitro, we have overexpressed yeast Fra2 and Grx3/4 in Escherichia coli. We have shown that coexpression of recombinant Fra2 with Grx3 or Grx4 allows purification of a stable [2Fe-2S](2+) cluster-containing Fra2-Grx3 or Fra2-Grx4 heterodimeric complex. Reconstitution of a [2Fe-2S] cluster on Grx3 or Grx4 without Fra2 produces a [2Fe-2S]-bridged homodimer. UV-visible absorption and CD, resonance Raman, EPR, ENDOR, Mossbauer, and EXAFS studies of [2Fe-2S] Grx3/4 homodimers and the [2Fe-2S] Fra2-Grx3/4 heterodimers indicate that inclusion of Fra2 in the Grx3/4 Fe-S complex causes a change in the cluster stability and coordination environment. Taken together, our analytical, spectroscopic, and mutagenesis data indicate that Grx3/4 and Fra2 form a Fe-S-bridged heterodimeric complex with Fe ligands provided by the active site cysteine of Grx3/4, glutathione, and a histidine residue. Overall, these results suggest that the ability of the Fra2-Grx3/4 complex to assemble a [2Fe-2S] cluster may act as a signal to control the iron regulon in response to cellular iron status in yeast.

DOI: 10.1021/bi901182w
PubMed: 19715344
PubMed Central: PMC2796373


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation.</title>
<author>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208</wicri:regionArea>
<orgName type="university">Université de Caroline du Sud</orgName>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mapolelo, Daphne T" sort="Mapolelo, Daphne T" uniqKey="Mapolelo D" first="Daphne T" last="Mapolelo">Daphne T. Mapolelo</name>
</author>
<author>
<name sortKey="Dingra, Nin N" sort="Dingra, Nin N" uniqKey="Dingra N" first="Nin N" last="Dingra">Nin N. Dingra</name>
</author>
<author>
<name sortKey="Naik, Sunil G" sort="Naik, Sunil G" uniqKey="Naik S" first="Sunil G" last="Naik">Sunil G. Naik</name>
</author>
<author>
<name sortKey="Lees, Nicholas S" sort="Lees, Nicholas S" uniqKey="Lees N" first="Nicholas S" last="Lees">Nicholas S. Lees</name>
</author>
<author>
<name sortKey="Hoffman, Brian M" sort="Hoffman, Brian M" uniqKey="Hoffman B" first="Brian M" last="Hoffman">Brian M. Hoffman</name>
</author>
<author>
<name sortKey="Riggs Gelasco, Pamela J" sort="Riggs Gelasco, Pamela J" uniqKey="Riggs Gelasco P" first="Pamela J" last="Riggs-Gelasco">Pamela J. Riggs-Gelasco</name>
</author>
<author>
<name sortKey="Huynh, Boi Hanh" sort="Huynh, Boi Hanh" uniqKey="Huynh B" first="Boi Hanh" last="Huynh">Boi Hanh Huynh</name>
</author>
<author>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19715344</idno>
<idno type="pmid">19715344</idno>
<idno type="doi">10.1021/bi901182w</idno>
<idno type="pmc">PMC2796373</idno>
<idno type="wicri:Area/Main/Corpus">000A82</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A82</idno>
<idno type="wicri:Area/Main/Curation">000A82</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A82</idno>
<idno type="wicri:Area/Main/Exploration">000A82</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation.</title>
<author>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208</wicri:regionArea>
<orgName type="university">Université de Caroline du Sud</orgName>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mapolelo, Daphne T" sort="Mapolelo, Daphne T" uniqKey="Mapolelo D" first="Daphne T" last="Mapolelo">Daphne T. Mapolelo</name>
</author>
<author>
<name sortKey="Dingra, Nin N" sort="Dingra, Nin N" uniqKey="Dingra N" first="Nin N" last="Dingra">Nin N. Dingra</name>
</author>
<author>
<name sortKey="Naik, Sunil G" sort="Naik, Sunil G" uniqKey="Naik S" first="Sunil G" last="Naik">Sunil G. Naik</name>
</author>
<author>
<name sortKey="Lees, Nicholas S" sort="Lees, Nicholas S" uniqKey="Lees N" first="Nicholas S" last="Lees">Nicholas S. Lees</name>
</author>
<author>
<name sortKey="Hoffman, Brian M" sort="Hoffman, Brian M" uniqKey="Hoffman B" first="Brian M" last="Hoffman">Brian M. Hoffman</name>
</author>
<author>
<name sortKey="Riggs Gelasco, Pamela J" sort="Riggs Gelasco, Pamela J" uniqKey="Riggs Gelasco P" first="Pamela J" last="Riggs-Gelasco">Pamela J. Riggs-Gelasco</name>
</author>
<author>
<name sortKey="Huynh, Boi Hanh" sort="Huynh, Boi Hanh" uniqKey="Huynh B" first="Boi Hanh" last="Huynh">Boi Hanh Huynh</name>
</author>
<author>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cysteine (genetics)</term>
<term>Cysteine (metabolism)</term>
<term>Dimerization (MeSH)</term>
<term>Enzyme Stability (genetics)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glutaredoxins (biosynthesis)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Histidine (genetics)</term>
<term>Histidine (metabolism)</term>
<term>Intracellular Signaling Peptides and Proteins (chemistry)</term>
<term>Intracellular Signaling Peptides and Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (biosynthesis)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Ligands (MeSH)</term>
<term>Multiprotein Complexes (biosynthesis)</term>
<term>Multiprotein Complexes (chemistry)</term>
<term>Multiprotein Complexes (genetics)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Oxidoreductases (biosynthesis)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Saccharomyces cerevisiae (chemistry)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (biosynthesis)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Signal Transduction (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexes multiprotéiques (biosynthèse)</term>
<term>Complexes multiprotéiques (composition chimique)</term>
<term>Complexes multiprotéiques (génétique)</term>
<term>Cystéine (génétique)</term>
<term>Cystéine (métabolisme)</term>
<term>Dimérisation (MeSH)</term>
<term>Ferrosulfoprotéines (biosynthèse)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Glutarédoxines (biosynthèse)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Histidine (génétique)</term>
<term>Histidine (métabolisme)</term>
<term>Ligands (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Oxidoreductases (biosynthèse)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (biosynthèse)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines et peptides de signalisation intracellulaire (composition chimique)</term>
<term>Protéines et peptides de signalisation intracellulaire (génétique)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (composition chimique)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Stabilité enzymatique (génétique)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Glutaredoxins</term>
<term>Iron-Sulfur Proteins</term>
<term>Multiprotein Complexes</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Multiprotein Complexes</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Histidine</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Multiprotein Complexes</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>Histidine</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Enzyme Stability</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Cystéine</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Histidine</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Saccharomyces cerevisiae</term>
<term>Stabilité enzymatique</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cystéine</term>
<term>Histidine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dimerization</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Ligands</term>
<term>Mutagenesis, Site-Directed</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dimérisation</term>
<term>Ligands</term>
<term>Mutagenèse dirigée</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The transcription of iron uptake and storage genes in Saccharomyces cerevisiae is primarily regulated by the transcription factor Aft1. Nucleocytoplasmic shuttling of Aft1 is dependent upon mitochondrial Fe-S cluster biosynthesis via a signaling pathway that includes the cytosolic monothiol glutaredoxins (Grx3 and Grx4) and the BolA homologue Fra2. However, the interactions between these proteins and the iron-dependent mechanism by which they control Aft1 localization are unclear. To reconstitute and characterize components of this signaling pathway in vitro, we have overexpressed yeast Fra2 and Grx3/4 in Escherichia coli. We have shown that coexpression of recombinant Fra2 with Grx3 or Grx4 allows purification of a stable [2Fe-2S](2+) cluster-containing Fra2-Grx3 or Fra2-Grx4 heterodimeric complex. Reconstitution of a [2Fe-2S] cluster on Grx3 or Grx4 without Fra2 produces a [2Fe-2S]-bridged homodimer. UV-visible absorption and CD, resonance Raman, EPR, ENDOR, Mossbauer, and EXAFS studies of [2Fe-2S] Grx3/4 homodimers and the [2Fe-2S] Fra2-Grx3/4 heterodimers indicate that inclusion of Fra2 in the Grx3/4 Fe-S complex causes a change in the cluster stability and coordination environment. Taken together, our analytical, spectroscopic, and mutagenesis data indicate that Grx3/4 and Fra2 form a Fe-S-bridged heterodimeric complex with Fe ligands provided by the active site cysteine of Grx3/4, glutathione, and a histidine residue. Overall, these results suggest that the ability of the Fra2-Grx3/4 complex to assemble a [2Fe-2S] cluster may act as a signal to control the iron regulon in response to cellular iron status in yeast.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19715344</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>12</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>40</Issue>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation.</ArticleTitle>
<Pagination>
<MedlinePgn>9569-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi901182w</ELocationID>
<Abstract>
<AbstractText>The transcription of iron uptake and storage genes in Saccharomyces cerevisiae is primarily regulated by the transcription factor Aft1. Nucleocytoplasmic shuttling of Aft1 is dependent upon mitochondrial Fe-S cluster biosynthesis via a signaling pathway that includes the cytosolic monothiol glutaredoxins (Grx3 and Grx4) and the BolA homologue Fra2. However, the interactions between these proteins and the iron-dependent mechanism by which they control Aft1 localization are unclear. To reconstitute and characterize components of this signaling pathway in vitro, we have overexpressed yeast Fra2 and Grx3/4 in Escherichia coli. We have shown that coexpression of recombinant Fra2 with Grx3 or Grx4 allows purification of a stable [2Fe-2S](2+) cluster-containing Fra2-Grx3 or Fra2-Grx4 heterodimeric complex. Reconstitution of a [2Fe-2S] cluster on Grx3 or Grx4 without Fra2 produces a [2Fe-2S]-bridged homodimer. UV-visible absorption and CD, resonance Raman, EPR, ENDOR, Mossbauer, and EXAFS studies of [2Fe-2S] Grx3/4 homodimers and the [2Fe-2S] Fra2-Grx3/4 heterodimers indicate that inclusion of Fra2 in the Grx3/4 Fe-S complex causes a change in the cluster stability and coordination environment. Taken together, our analytical, spectroscopic, and mutagenesis data indicate that Grx3/4 and Fra2 form a Fe-S-bridged heterodimeric complex with Fe ligands provided by the active site cysteine of Grx3/4, glutathione, and a histidine residue. Overall, these results suggest that the ability of the Fra2-Grx3/4 complex to assemble a [2Fe-2S] cluster may act as a signal to control the iron regulon in response to cellular iron status in yeast.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Haoran</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mapolelo</LastName>
<ForeName>Daphne T</ForeName>
<Initials>DT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dingra</LastName>
<ForeName>Nin N</ForeName>
<Initials>NN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Naik</LastName>
<ForeName>Sunil G</ForeName>
<Initials>SG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lees</LastName>
<ForeName>Nicholas S</ForeName>
<Initials>NS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hoffman</LastName>
<ForeName>Brian M</ForeName>
<Initials>BM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riggs-Gelasco</LastName>
<ForeName>Pamela J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huynh</LastName>
<ForeName>Boi Hanh</ForeName>
<Initials>BH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Michael K</ForeName>
<Initials>MK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Outten</LastName>
<ForeName>Caryn E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HL13531</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM047295</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM062524-09</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ES13780</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM47295</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL013531-37</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM062524</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K22 ES013780-03</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K22 ES013780</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 RR016461-05A10005</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM62524</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL013531</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 EB009998</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 RR016461</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 GM062524</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM047295-16</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C529266">FRA2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516012">Grx4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QD397987E</RegistryNumber>
<NameOfSubstance UI="D006639">Histidine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C545181">Grx3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006639" MajorTopicYN="N">Histidine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
<ArticleId IdType="doi">10.1021/bi901182w</ArticleId>
<ArticleId IdType="pmc">PMC2796373</ArticleId>
<ArticleId IdType="mid">NIHMS146256</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Chem Biol. 2007 May;3(5):278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17401378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2980-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17538022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14342-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14640-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 16;282(46):33242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 21;275(3):1902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10636891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):599-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1143-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Mar 16;269(2):451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Jul 11;39(27):7856-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 16;276(11):7762-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11112771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 28;276(52):49244-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11673473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 10;415(6868):180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18914-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11877447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2002 Dec;11(12):2969-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12441394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2003 Feb;8(3):318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Jun 24;42(24):7303-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12809486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 15;22(18):4815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Dec 5;302(5651):1727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14605208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Feb 24;43(7):2007-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14672937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Apr 21;126(15):4788-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15080677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2004 Aug 15;331(2):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15265744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1978 Oct 31;17(22):4770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">728385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Jun;131(2):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6614472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Jan 10;259(1):124-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6323399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Nov;170(11):5169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3053647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 May 30;28(11):4861-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2765515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Sep 5;28(18):7233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2819064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Aug 5;267(22):15502-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1639790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Dec 7;1140(2):175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1280165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jan 18;33(2):403-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8286370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Nov 22;33(46):13642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7947772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Mar 15;14(6):1231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7720713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1995 Feb;18(2):321-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7744317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jun 18;35(24):7834-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8672484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jul 1;15(13):3377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Jun 15;13(7):621-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9200812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Aug 12;36(32):9847-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9245417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Jan 31;579(3):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15670813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 3;433(7025):531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15690043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 19;280(33):29513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 30;440(7084):637-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16554755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2007 Jan;15(1):29-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Physiol Biochem. 2007 Oct-Dec;113(4-5):234-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2008 Mar 28;102(6):711-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Sep;64(Pt 9):927-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18703840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jun 9;48(22):4747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19388667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460036</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
</region>
<settlement>
<li>Columbia (Caroline du Sud)</li>
</settlement>
<orgName>
<li>Université de Caroline du Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Dingra, Nin N" sort="Dingra, Nin N" uniqKey="Dingra N" first="Nin N" last="Dingra">Nin N. Dingra</name>
<name sortKey="Hoffman, Brian M" sort="Hoffman, Brian M" uniqKey="Hoffman B" first="Brian M" last="Hoffman">Brian M. Hoffman</name>
<name sortKey="Huynh, Boi Hanh" sort="Huynh, Boi Hanh" uniqKey="Huynh B" first="Boi Hanh" last="Huynh">Boi Hanh Huynh</name>
<name sortKey="Johnson, Michael K" sort="Johnson, Michael K" uniqKey="Johnson M" first="Michael K" last="Johnson">Michael K. Johnson</name>
<name sortKey="Lees, Nicholas S" sort="Lees, Nicholas S" uniqKey="Lees N" first="Nicholas S" last="Lees">Nicholas S. Lees</name>
<name sortKey="Mapolelo, Daphne T" sort="Mapolelo, Daphne T" uniqKey="Mapolelo D" first="Daphne T" last="Mapolelo">Daphne T. Mapolelo</name>
<name sortKey="Naik, Sunil G" sort="Naik, Sunil G" uniqKey="Naik S" first="Sunil G" last="Naik">Sunil G. Naik</name>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
<name sortKey="Riggs Gelasco, Pamela J" sort="Riggs Gelasco, Pamela J" uniqKey="Riggs Gelasco P" first="Pamela J" last="Riggs-Gelasco">Pamela J. Riggs-Gelasco</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Sud">
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19715344
   |texte=   The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19715344" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020